vanrijn/src/raycasting/mod.rs

206 lines
5.9 KiB
Rust

use nalgebra::{convert, Point3, RealField, Vector3};
use super::materials::Material;
use std::sync::Arc;
pub mod sphere;
pub use sphere::Sphere;
#[derive(Clone, Debug)]
pub struct Ray<T: RealField> {
pub origin: Point3<T>,
pub direction: Vector3<T>,
}
impl<T: RealField> Ray<T> {
pub fn new(origin: Point3<T>, direction: Vector3<T>) -> Ray<T> {
Ray {
origin,
direction: direction.normalize(),
}
}
pub fn point_at(&self, t: T) -> Point3<T> {
self.origin + self.direction * t
}
pub fn bias(&self, amount: T) -> Ray<T> {
Ray::new(self.origin + self.direction * amount, self.direction)
}
}
#[derive(Debug)]
pub struct IntersectionInfo<T: RealField> {
pub distance: T,
pub location: Point3<T>,
pub normal: Vector3<T>,
pub tangent: Vector3<T>,
pub cotangent: Vector3<T>,
pub retro: Vector3<T>,
pub material: Arc<dyn Material<T>>,
}
pub trait Intersect<T: RealField>: Send + Sync {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>>;
}
pub struct Plane<T: RealField> {
normal: Vector3<T>,
tangent: Vector3<T>,
cotangent: Vector3<T>,
distance_from_origin: T,
material: Arc<dyn Material<T>>,
}
impl<T: RealField> Plane<T> {
pub fn new(
normal: Vector3<T>,
distance_from_origin: T,
material: Arc<dyn Material<T>>,
) -> Plane<T> {
normal.normalize();
let mut axis_closest_to_tangent = Vector3::zeros();
axis_closest_to_tangent[normal.iamin()] = T::one();
let cotangent = normal.cross(&axis_closest_to_tangent).normalize();
let tangent = normal.cross(&cotangent);
Plane {
normal,
tangent,
cotangent,
distance_from_origin,
material,
}
}
}
impl<T: RealField> Intersect<T> for Plane<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
let ray_direction_dot_plane_normal = ray.direction.dot(&self.normal);
let point_on_plane = self.normal * self.distance_from_origin;
let point_on_plane_minus_ray_origin_dot_normal =
(point_on_plane - ray.origin.coords).dot(&self.normal);
if ray_direction_dot_plane_normal == convert(0.0) {
//Ray is parallel to plane
if point_on_plane_minus_ray_origin_dot_normal != convert(0.0) {
//Ray is not in plane
return None;
}
}
let t = point_on_plane_minus_ray_origin_dot_normal / ray_direction_dot_plane_normal;
if t < convert(0.0) {
return None;
}
Some(IntersectionInfo {
distance: t,
location: ray.point_at(t),
normal: self.normal,
tangent: self.tangent,
cotangent: self.cotangent,
retro: -ray.direction,
material: Arc::clone(&self.material),
})
}
}
#[cfg(test)]
mod tests {
use quickcheck_macros::quickcheck;
macro_rules! assert_matches {
($expression:expr, $($pattern:tt)+) => {
match $expression {
$($pattern)+ => (),
ref e => panic!("assertion failed: `{:?}` does not match `{}`", e,
stringify!($($pattern)+)),
}
}
}
use super::*;
use crate::materials::LambertianMaterial;
use quickcheck::{Arbitrary, Gen};
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
let origin = <Point3<T> as Arbitrary>::arbitrary(g);
let direction = <Vector3<T> as Arbitrary>::arbitrary(g);
return Ray::new(origin, direction);
}
}
#[quickcheck]
fn t0_is_origin(ray: Ray<f64>) -> bool {
ray.point_at(0.0) == ray.origin
}
#[quickcheck]
fn t1_is_origin_plus_direction(ray: Ray<f64>) -> bool {
ray.point_at(1.0) == ray.origin + ray.direction
}
#[quickcheck]
fn points_are_colinear(ray: Ray<f64>, t1: f64, t2: f64, t3: f64) -> bool {
let p1 = ray.point_at(t1);
let p2 = ray.point_at(t2);
let p3 = ray.point_at(t3);
let epsilon = [t1, t2, t3, ray.origin[0], ray.origin[1], ray.origin[2]]
.iter()
.fold(0.0, |a, &b| a.max(b.abs()))
* std::f64::EPSILON
* 256.0;
(p2 - p1).cross(&(p3 - p2)).norm() < epsilon
}
#[quickcheck]
fn t_is_distance(ray: Ray<f64>, t: f64) -> bool {
(ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001
}
#[test]
fn ray_intersects_plane() {
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Arc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(p.intersect(&r), Some(_));
}
#[test]
fn ray_does_not_intersect_plane() {
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Arc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(p.intersect(&r), None);
}
#[test]
fn intersection_point_is_on_plane() {
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Arc::new(LambertianMaterial::new_dummy()),
);
match p.intersect(&r) {
Some(IntersectionInfo {
distance: _,
location,
normal: _,
tangent: _,
cotangent: _,
retro: _,
material: _,
}) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001),
None => panic!(),
}
}
}