use nalgebra::{convert, Point3, RealField, Vector3}; use super::materials::Material; use std::sync::Arc; pub mod sphere; pub use sphere::Sphere; #[derive(Clone, Debug)] pub struct Ray { pub origin: Point3, pub direction: Vector3, } impl Ray { pub fn new(origin: Point3, direction: Vector3) -> Ray { Ray { origin, direction: direction.normalize(), } } pub fn point_at(&self, t: T) -> Point3 { self.origin + self.direction * t } pub fn bias(&self, amount: T) -> Ray { Ray::new(self.origin + self.direction * amount, self.direction) } } #[derive(Debug)] pub struct IntersectionInfo { pub distance: T, pub location: Point3, pub normal: Vector3, pub tangent: Vector3, pub cotangent: Vector3, pub retro: Vector3, pub material: Arc>, } pub trait Intersect: Send + Sync { fn intersect<'a>(&'a self, ray: &Ray) -> Option>; } pub struct Plane { normal: Vector3, tangent: Vector3, cotangent: Vector3, distance_from_origin: T, material: Arc>, } impl Plane { pub fn new( normal: Vector3, distance_from_origin: T, material: Arc>, ) -> Plane { normal.normalize(); let mut axis_closest_to_tangent = Vector3::zeros(); axis_closest_to_tangent[normal.iamin()] = T::one(); let cotangent = normal.cross(&axis_closest_to_tangent).normalize(); let tangent = normal.cross(&cotangent); Plane { normal, tangent, cotangent, distance_from_origin, material, } } } impl Intersect for Plane { fn intersect<'a>(&'a self, ray: &Ray) -> Option> { let ray_direction_dot_plane_normal = ray.direction.dot(&self.normal); let point_on_plane = self.normal * self.distance_from_origin; let point_on_plane_minus_ray_origin_dot_normal = (point_on_plane - ray.origin.coords).dot(&self.normal); if ray_direction_dot_plane_normal == convert(0.0) { //Ray is parallel to plane if point_on_plane_minus_ray_origin_dot_normal != convert(0.0) { //Ray is not in plane return None; } } let t = point_on_plane_minus_ray_origin_dot_normal / ray_direction_dot_plane_normal; if t < convert(0.0) { return None; } Some(IntersectionInfo { distance: t, location: ray.point_at(t), normal: self.normal, tangent: self.tangent, cotangent: self.cotangent, retro: -ray.direction, material: Arc::clone(&self.material), }) } } #[cfg(test)] mod tests { use quickcheck_macros::quickcheck; macro_rules! assert_matches { ($expression:expr, $($pattern:tt)+) => { match $expression { $($pattern)+ => (), ref e => panic!("assertion failed: `{:?}` does not match `{}`", e, stringify!($($pattern)+)), } } } use super::*; use crate::materials::LambertianMaterial; use quickcheck::{Arbitrary, Gen}; impl Arbitrary for Ray { fn arbitrary(g: &mut G) -> Ray { let origin = as Arbitrary>::arbitrary(g); let direction = as Arbitrary>::arbitrary(g); return Ray::new(origin, direction); } } #[quickcheck] fn t0_is_origin(ray: Ray) -> bool { ray.point_at(0.0) == ray.origin } #[quickcheck] fn t1_is_origin_plus_direction(ray: Ray) -> bool { ray.point_at(1.0) == ray.origin + ray.direction } #[quickcheck] fn points_are_colinear(ray: Ray, t1: f64, t2: f64, t3: f64) -> bool { let p1 = ray.point_at(t1); let p2 = ray.point_at(t2); let p3 = ray.point_at(t3); let epsilon = [t1, t2, t3, ray.origin[0], ray.origin[1], ray.origin[2]] .iter() .fold(0.0, |a, &b| a.max(b.abs())) * std::f64::EPSILON * 256.0; (p2 - p1).cross(&(p3 - p2)).norm() < epsilon } #[quickcheck] fn t_is_distance(ray: Ray, t: f64) -> bool { (ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001 } #[test] fn ray_intersects_plane() { let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0)); let p = Plane::new( Vector3::new(1.0, 0.0, 0.0), -5.0, Arc::new(LambertianMaterial::new_dummy()), ); assert_matches!(p.intersect(&r), Some(_)); } #[test] fn ray_does_not_intersect_plane() { let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(1.0, 0.0, 1.0)); let p = Plane::new( Vector3::new(1.0, 0.0, 0.0), -5.0, Arc::new(LambertianMaterial::new_dummy()), ); assert_matches!(p.intersect(&r), None); } #[test] fn intersection_point_is_on_plane() { let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0)); let p = Plane::new( Vector3::new(1.0, 0.0, 0.0), -5.0, Arc::new(LambertianMaterial::new_dummy()), ); match p.intersect(&r) { Some(IntersectionInfo { distance: _, location, normal: _, tangent: _, cotangent: _, retro: _, material: _, }) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001), None => panic!(), } } }