vanrijn/src/raycasting.rs

376 lines
12 KiB
Rust

use nalgebra::{convert, RealField, Vector3};
use super::materials::Material;
use std::rc::Rc;
#[derive(Clone, Debug)]
pub struct Ray<T: RealField> {
pub origin: Vector3<T>,
pub direction: Vector3<T>,
}
impl<T: RealField> Ray<T> {
pub fn new(origin: Vector3<T>, direction: Vector3<T>) -> Ray<T> {
Ray {
origin,
direction: direction.normalize(),
}
}
pub fn point_at(&self, t: T) -> Vector3<T> {
self.origin + self.direction * t
}
pub fn bias(&self, amount: T) -> Ray<T> {
Ray::new(self.origin + self.direction * amount, self.direction)
}
}
#[derive(Debug)]
pub struct IntersectionInfo<T: RealField> {
pub distance: T,
pub location: Vector3<T>,
pub normal: Vector3<T>,
pub tangent: Vector3<T>,
pub cotangent: Vector3<T>,
pub retro: Vector3<T>,
pub material: Rc<dyn Material<T>>,
}
pub trait Intersect<T: RealField> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>>;
}
pub struct Sphere<T: RealField> {
centre: Vector3<T>,
radius: T,
material: Rc<dyn Material<T>>,
}
impl<T: RealField> Sphere<T> {
pub fn new(centre: Vector3<T>, radius: T, material: Rc<dyn Material<T>>) -> Sphere<T> {
Sphere {
centre,
radius,
material,
}
}
}
impl<T: RealField> Intersect<T> for Sphere<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
/*let ray_origin_to_sphere_centre = self.centre - ray.origin;
let radius_squared = self.radius * self.radius;
let is_inside_sphere = ray_origin_to_sphere_centre.norm_squared() <= radius_squared;
// t0/p0 is the point on the ray that's closest to the centre of the sphere
// ray.direction is normalized, so it's not necessary to divide by its length.
let t0 = ray_origin_to_sphere_centre.dot(&ray.direction);
if !is_inside_sphere && t0 < T::zero() {
// Sphere is behind ray origin
return None;
}
// Squared distance between ray origin and sphere centre
let d0_squared = (ray_origin_to_sphere_centre).norm_squared();
// p0, ray.origin and sphere.centre form a right triangle, with p0 at the right corner,
// Squared distance petween p0 and sphere centre, using Pythagoras
let p0_dist_from_centre_squared = d0_squared - t0 * t0;
if p0_dist_from_centre_squared > radius_squared {
// Sphere is in front of ray but ray misses
return None;
}
let p0_dist_from_centre =p0_dist_from_centre_squared.sqrt();
// Two more right triangles are formed by p0, the sphere centre, and the two places
// where the ray intersects the sphere. (Or the ray may be a tangent to the sphere
// in which case these triangles are degenerate. Here we use Pythagoras again to find
.// find the distance between p0 and the two intersection points.
let delta = (radius_squared - p0_dist_from_centre_squared).sqrt();
let distance = if is_inside_sphere {
// radius origin is inside sphere
t0 + delta
} else {
t0 - delta
};
let location = ray.point_at(distance);
let normal = (location - self.centre).normalize();
let tangent = normal.cross(&Vector3::z_axis());
let cotangent = normal.cross(&tangent);
let retro = -ray.direction;*/
let two: T = convert(2.0);
let four: T = convert(4.0);
let a = ray
.direction
.component_mul(&ray.direction)
.iter()
.fold(T::zero(), |a, b| a + *b);
let b = ((ray.origin.component_mul(&ray.direction)
- self.centre.component_mul(&ray.direction))
* two)
.iter()
.fold(T::zero(), |a, b| a + *b);
let c = (ray.origin.component_mul(&ray.origin) + self.centre.component_mul(&self.centre)
- self.centre.component_mul(&ray.origin) * two)
.iter()
.fold(T::zero(), |a, b| a + *b)
- self.radius * self.radius;
let delta_squared: T = b * b - four * a * c;
if delta_squared < T::zero() {
None
} else {
let delta = delta_squared.sqrt();
let one_over_2_a = T::one() / (two * a);
let t1 = (-b - delta) * one_over_2_a;
let t2 = (-b + delta) * one_over_2_a;
let distance = if t1 < T::zero() {
t2
} else if t2 < T::zero() {
t1
} else if t1 < t2 {
t1
} else {
t2
};
if distance <= T::zero() {
None
} else {
let location = ray.point_at(distance);
let normal = (location - self.centre).normalize();
let tangent = normal.cross(&Vector3::z_axis()).normalize();
let cotangent = normal.cross(&tangent);
let retro = -ray.direction;
Some(IntersectionInfo {
distance,
location,
normal,
tangent,
cotangent,
retro,
material: Rc::clone(&self.material),
})
}
}
}
}
pub struct Plane<T: RealField> {
normal: Vector3<T>,
tangent: Vector3<T>,
cotangent: Vector3<T>,
distance_from_origin: T,
material: Rc<dyn Material<T>>,
}
impl<T: RealField> Plane<T> {
pub fn new(
normal: Vector3<T>,
distance_from_origin: T,
material: Rc<dyn Material<T>>,
) -> Plane<T> {
normal.normalize();
let mut axis_closest_to_tangent = Vector3::zeros();
axis_closest_to_tangent[normal.iamin()] = T::one();
let cotangent = normal.cross(&axis_closest_to_tangent).normalize();
let tangent = normal.cross(&cotangent);
Plane {
normal,
tangent,
cotangent,
distance_from_origin,
material,
}
}
}
impl<T: RealField> Intersect<T> for Plane<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
let ray_direction_dot_plane_normal = ray.direction.dot(&self.normal);
let point_on_plane = self.normal * self.distance_from_origin;
let point_on_plane_minus_ray_origin_dot_normal =
(point_on_plane - ray.origin).dot(&self.normal);
if ray_direction_dot_plane_normal == convert(0.0) {
//Ray is parallel to plane
if point_on_plane_minus_ray_origin_dot_normal != convert(0.0) {
//Ray is not in plane
return None;
}
}
let t = point_on_plane_minus_ray_origin_dot_normal / ray_direction_dot_plane_normal;
if t < convert(0.0) {
return None;
}
Some(IntersectionInfo {
distance: t,
location: ray.point_at(t),
normal: self.normal,
tangent: self.tangent,
cotangent: self.cotangent,
retro: -ray.direction,
material: Rc::clone(&self.material),
})
}
}
#[cfg(test)]
mod tests {
use quickcheck_macros::quickcheck;
macro_rules! assert_matches {
($expression:expr, $($pattern:tt)+) => {
match $expression {
$($pattern)+ => (),
ref e => panic!("assertion failed: `{:?}` does not match `{}`", e,
stringify!($($pattern)+)),
}
}
}
use super::*;
use crate::materials::LambertianMaterial;
use quickcheck::{Arbitrary, Gen, TestResult};
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
let origin = <Vector3<T> as Arbitrary>::arbitrary(g);
let direction = <Vector3<T> as Arbitrary>::arbitrary(g);
return Ray::new(origin, direction);
}
}
#[quickcheck]
fn t0_is_origin(ray: Ray<f64>) -> bool {
ray.point_at(0.0) == ray.origin
}
#[quickcheck]
fn t1_is_origin_plus_direction(ray: Ray<f64>) -> bool {
ray.point_at(1.0) == ray.origin + ray.direction
}
#[quickcheck]
fn points_are_colinear(ray: Ray<f64>, t1: f64, t2: f64, t3: f64) -> bool {
let p1 = ray.point_at(t1);
let p2 = ray.point_at(t2);
let p3 = ray.point_at(t3);
let epsilon = [t1, t2, t3, ray.origin[0], ray.origin[1], ray.origin[2]]
.iter()
.fold(0.0, |a, &b| a.max(b.abs()))
* std::f64::EPSILON
* 256.0;
(p2 - p1).cross(&(p3 - p2)).norm() < epsilon
}
#[quickcheck]
fn t_is_distance(ray: Ray<f64>, t: f64) -> bool {
(ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001
}
#[test]
fn ray_intersects_sphere() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
let s = Sphere::new(
Vector3::new(1.5, 1.5, 15.0),
5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(s.intersect(&r), Some(_));
}
#[test]
fn ray_does_not_intersect_sphere_when_sphere_is_in_front() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
let s = Sphere::new(
Vector3::new(-5.0, 1.5, 15.0),
5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(s.intersect(&r), None);
}
#[test]
fn ray_does_not_intersect_sphere_when_sphere_is_behind() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
let s = Sphere::new(
Vector3::new(1.5, 1.5, -15.0),
5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(s.intersect(&r), None);
}
#[test]
fn ray_intersects_sphere_when_origin_is_inside() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
let s = Sphere::new(
Vector3::new(1.5, 1.5, 2.0),
5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(s.intersect(&r), Some(_));
}
#[quickcheck]
fn ray_intersects_sphere_centre_at_correct_distance(
ray_origin: Vector3<f64>,
sphere_centre: Vector3<f64>,
radius: f64,
) -> TestResult {
if radius <= 0.0 || radius + 0.000001 >= (ray_origin - sphere_centre).norm() {
return TestResult::discard();
};
let sphere = Sphere::new(
sphere_centre,
radius,
Rc::new(LambertianMaterial::new_dummy()),
);
let ray = Ray::new(ray_origin, sphere_centre - ray_origin);
let info = sphere.intersect(&ray).unwrap();
let distance_to_centre = (sphere_centre - ray.origin).norm();
TestResult::from_bool(
(distance_to_centre - (info.distance + sphere.radius)).abs() < 0.00001,
)
}
#[test]
fn ray_intersects_plane() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(p.intersect(&r), Some(_));
}
#[test]
fn ray_does_not_intersect_plane() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
assert_matches!(p.intersect(&r), None);
}
#[test]
fn intersection_point_is_on_plane() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
let p = Plane::new(
Vector3::new(1.0, 0.0, 0.0),
-5.0,
Rc::new(LambertianMaterial::new_dummy()),
);
match p.intersect(&r) {
Some(IntersectionInfo {
distance: _,
location,
normal: _,
tangent: _,
cotangent: _,
retro: _,
material: _,
}) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001),
None => panic!(),
}
}
}