use std::fs::File; use std::io::BufWriter; use std::path::Path; use crate::colour::{ColourRgbF, ColourRgbU8, ColourXyz}; use crate::util::Array2D; #[derive(Debug)] pub struct ImageRgbU8 { data: Array2D<[u8; 3]>, } impl ImageRgbU8 { pub fn new(width: usize, height: usize) -> ImageRgbU8 { ImageRgbU8 { data: Array2D::new(height, width), } } pub fn get_colour(&self, row: usize, column: usize) -> ColourRgbU8 { ColourRgbU8 { values: self.data[row][column], } } pub fn set_colour(&mut self, row: usize, column: usize, colour: ColourRgbU8) { let slice = &mut self.data[row][column]; slice.copy_from_slice(&colour.values[..]); } pub fn get_pixel_data(&self) -> &[u8] { let data = self.data.as_slice(); unsafe { std::slice::from_raw_parts(data[0].as_ptr(), data.len() * 3) } } pub fn get_width(&self) -> usize { self.data.get_width() } pub fn get_height(&self) -> usize { self.data.get_height() } pub fn num_channels() -> usize { 3 } pub fn update(&mut self, start_row: usize, start_column: usize, image: &ImageRgbU8) { self.data.update_block(start_row, start_column, &image.data); } pub fn write_png(&self, filename: &Path) -> Result<(), std::io::Error> { let file = File::create(filename)?; let file_buffer = &mut BufWriter::new(file); let mut encoder = png::Encoder::new( file_buffer, self.get_width() as u32, self.get_height() as u32, ); encoder.set_color(png::ColorType::RGB); encoder.set_depth(png::BitDepth::Eight); let mut writer = encoder.write_header()?; writer.write_image_data(self.get_pixel_data())?; Ok(()) } } pub struct ImageRgbF { pub data: Array2D, } impl ImageRgbF { pub fn new(width: usize, height: usize) -> ImageRgbF { ImageRgbF { data: Array2D::new(height, width), } } pub fn clear(&mut self) { self.data.clear(); } pub fn get_colour(&self, row: usize, column: usize) -> ColourRgbF { self.data[row][column] } pub fn set_colour(&mut self, row: usize, column: usize, colour: ColourRgbF) { self.data[row][column] = colour; } pub fn get_width(&self) -> usize { self.data.get_width() } pub fn get_height(&self) -> usize { self.data.get_height() } pub fn num_channels() -> usize { 3 } } pub trait NormalizedAsByte { fn normalized_to_byte(self) -> u8; fn byte_to_normalized(byte: u8) -> Self; } impl NormalizedAsByte for f32 { fn normalized_to_byte(self) -> u8 { (self * (u8::MAX as f32)) as u8 } fn byte_to_normalized(byte: u8) -> f32 { (byte as f32) / (u8::MAX as f32) } } impl NormalizedAsByte for f64 { fn normalized_to_byte(self) -> u8 { (self * (u8::MAX as f64)) as u8 } fn byte_to_normalized(byte: u8) -> f64 { (byte as f64) / (u8::MAX as f64) } } pub trait ToneMapper { fn apply_tone_mapping(&self, image_in: &Array2D, image_out: &mut ImageRgbU8); } #[derive(Default)] pub struct ClampingToneMapper {} impl ClampingToneMapper { fn clamp(v: &f64) -> u8 { v.clamp(0.0, 1.0).normalized_to_byte() } } impl ToneMapper for ClampingToneMapper { fn apply_tone_mapping(&self, image_in: &Array2D, image_out: &mut ImageRgbU8) { assert!(image_in.get_width() == image_out.get_width()); assert!(image_in.get_height() == image_out.get_height()); for column in 0..image_in.get_width() { for row in 0..image_in.get_height() { let colour = image_in[row][column]; image_out.set_colour( row, column, ColourRgbU8 { values: [ Self::clamp(&colour.red()), Self::clamp(&colour.green()), Self::clamp(&colour.blue()), ], }, ); } } } } impl ToneMapper for ClampingToneMapper { fn apply_tone_mapping(&self, image_in: &Array2D, image_out: &mut ImageRgbU8) { assert!(image_in.get_width() == image_out.get_width()); assert!(image_in.get_height() == image_out.get_height()); for column in 0..image_in.get_width() { for row in 0..image_in.get_height() { let colour = image_in[row][column].to_srgb(); image_out.set_colour( row, column, ColourRgbU8 { values: [ Self::clamp(&colour.red()), Self::clamp(&colour.green()), Self::clamp(&colour.blue()), ], }, ); } } } } #[cfg(test)] mod tests { use super::*; #[test] fn get_pixel_data_returns_correct_values() { let mut target = ImageRgbU8::new(4, 3); for i in 0..3 { for j in 0..4 { target.set_colour( i, j, ColourRgbU8 { values: [i as u8, j as u8, i as u8], }, ) } } for i in 0..3 { for j in 0..4 { let index = (i * 4 + j) * 3; assert!(target.get_pixel_data()[index] == i as u8); assert!(target.get_pixel_data()[index + 1] == j as u8); assert!(target.get_pixel_data()[index + 2] == i as u8); } } } mod normalized_as_byte { use super::*; #[test] fn normalized_to_byte_converts_1_to_255_for_f32() { assert!((1.0f32).normalized_to_byte() == 0xff); } #[test] fn byte_to_normalized_converts_255_to_1_for_f32() { assert!(f32::byte_to_normalized(0xff) == 1.0); } #[test] fn normalized_to_byte_converts_1_to_255_for_f64() { assert!((1.0f64).normalized_to_byte() == 255); } #[test] fn byte_to_normalized_converts_255_to_1_for_f64() { assert!(f64::byte_to_normalized(0xff) == 1.0); } #[test] fn normalized_to_byte_converts_0_to_0_for_f32() { assert!((0.0f32).normalized_to_byte() == 0); } #[test] fn byte_to_normalized_converts_0_to_0_for_f32() { assert!(f32::byte_to_normalized(0) == 0.0); } #[test] fn normalized_to_byte_converts_0_to_0_for_f64() { assert!((0.0f64).normalized_to_byte() == 0); } #[test] fn byte_to_normalized_converts_0_to_0_for_f64() { assert!(f64::byte_to_normalized(0) == 0.0); } #[test] fn normalized_to_byte_converts_half_to_127_for_f32() { assert!((0.5f32).normalized_to_byte() == 0x7f); } #[test] fn byte_to_normalized_converts_127_to_half_for_f32() { assert!((f32::byte_to_normalized(0x7f) - 0.5).abs() < 1.0 / 256.0); } #[test] fn normalized_to_byte_converts_half_to_127_for_f64() { assert!((0.5f64).normalized_to_byte() == 0x7f); } #[test] fn byte_to_normalized_converts_127_to_half_for_f64() { assert!((f64::byte_to_normalized(0x7f) - 0.5).abs() < 1.0 / 256.0); } } mod clamping_tone_mapper { use super::*; #[test] fn black_colourrgb_becomes_black_colourrgb24() { let target = ClampingToneMapper {}; let mut image_in = ImageRgbF::new(1, 1); let mut image_out = ImageRgbU8::new(1, 1); image_in.set_colour(0, 0, ColourRgbF::new(0.0, 0.0, 0.0)); target.apply_tone_mapping(&image_in.data, &mut image_out); assert!(image_out.get_colour(0, 0).values == [0, 0, 0]); } #[test] fn white_colourrgb_becomes_white_colourrgb24() { let target = ClampingToneMapper {}; let mut image_in = ImageRgbF::new(1, 1); let mut image_out = ImageRgbU8::new(1, 1); image_in.set_colour(0, 0, ColourRgbF::new(1.0, 1.0, 1.0)); target.apply_tone_mapping(&image_in.data, &mut image_out); assert!(image_out.get_colour(0, 0).values == [0xff, 0xff, 0xff]); } #[test] fn supersaturated_white_colourrgb_becomes_white_colourrgb24() { let target = ClampingToneMapper {}; let mut image_in = ImageRgbF::new(1, 1); let mut image_out = ImageRgbU8::new(1, 1); image_in.set_colour(0, 0, ColourRgbF::new(2.0, 2.0, 2.0)); target.apply_tone_mapping(&image_in.data, &mut image_out); assert!(image_out.get_colour(0, 0).values == [0xff, 0xff, 0xff]); } #[test] fn supersaturated_green_colourrgb_becomes_green_colourrgb24() { let target = ClampingToneMapper {}; let mut image_in = ImageRgbF::new(1, 1); let mut image_out = ImageRgbU8::new(1, 1); image_in.set_colour(0, 0, ColourRgbF::new(0.0, 2.0, 0.0)); target.apply_tone_mapping(&image_in.data, &mut image_out); assert!(image_out.get_colour(0, 0).values == [0x0, 0xff, 0x0]); } #[test] fn dark_red_colourrgb_becomes_dark_red_colourrgb24() { let target = ClampingToneMapper {}; let mut image_in = ImageRgbF::new(1, 1); let mut image_out = ImageRgbU8::new(1, 1); image_in.set_colour(0, 0, ColourRgbF::new(0.5, 0.0, 0.0)); target.apply_tone_mapping(&image_in.data, &mut image_out); assert!(image_out.get_colour(0, 0).values == [0x7f, 0x0, 0x0]); } } }