Create raycasting module
This commit is contained in:
parent
192857eead
commit
eaf9ba7b2f
125
src/lib.rs
125
src/lib.rs
|
|
@ -1,124 +1 @@
|
|||
use nalgebra::{RealField, Vector3};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Ray<T: RealField> {
|
||||
origin: Vector3<T>,
|
||||
direction: Vector3<T>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Ray<T> {
|
||||
pub fn new(origin: Vector3<T>, direction: Vector3<T>) -> Ray<T> {
|
||||
Ray {
|
||||
origin,
|
||||
direction: direction.normalize(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn point_at(&self, t: T) -> Vector3<T> {
|
||||
return self.origin + self.direction * t;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct IntersectionInfo<T: RealField> {
|
||||
distance: T,
|
||||
location: Vector3<T>,
|
||||
}
|
||||
|
||||
trait Intersect<T: RealField> {
|
||||
fn intersect(&self, ray: &Ray<T>) -> Option<IntersectionInfo<T>>;
|
||||
}
|
||||
|
||||
pub struct Sphere<T: RealField> {
|
||||
centre: Vector3<T>,
|
||||
radius: T,
|
||||
}
|
||||
|
||||
impl<T: RealField> Sphere<T> {
|
||||
pub fn new(centre: Vector3<T>, radius: T) -> Sphere<T> {
|
||||
Sphere { centre, radius }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField> Intersect<T> for Sphere<T> {
|
||||
fn intersect(&self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
|
||||
// t0/p0 is the point on the ray that's closest to the centre of the sphere
|
||||
let t0 = (self.centre - ray.origin).dot(&ray.direction);
|
||||
let p0 = ray.point_at(t0);
|
||||
if (self.centre - p0).norm() <= self.radius {
|
||||
Some(IntersectionInfo {
|
||||
distance: t0,
|
||||
location: p0,
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use quickcheck_macros::quickcheck;
|
||||
|
||||
macro_rules! assert_matches {
|
||||
($expression:expr, $($pattern:tt)+) => {
|
||||
match $expression {
|
||||
$($pattern)+ => (),
|
||||
ref e => panic!("assertion failed: `{:?}` does not match `{}`", e,
|
||||
stringify!($($pattern)+)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
use super::*;
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
|
||||
let origin = <Vector3<T> as Arbitrary>::arbitrary(g);
|
||||
let direction = <Vector3<T> as Arbitrary>::arbitrary(g);
|
||||
return Ray::new(origin, direction);
|
||||
}
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t0_is_origin(ray: Ray<f64>) -> bool {
|
||||
ray.point_at(0.0) == ray.origin
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t1_is_origin_plus_direction(ray: Ray<f64>) -> bool {
|
||||
ray.point_at(1.0) == ray.origin + ray.direction
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn points_are_colinear(ray: Ray<f64>, t1: f64, t2: f64, t3: f64) -> bool {
|
||||
let p1 = ray.point_at(t1);
|
||||
let p2 = ray.point_at(t2);
|
||||
let p3 = ray.point_at(t3);
|
||||
let epsilon = [t1, t2, t3, ray.origin[0], ray.origin[1], ray.origin[2]]
|
||||
.iter()
|
||||
.fold(0.0, |a, &b| a.max(b.abs()))
|
||||
* std::f64::EPSILON
|
||||
* 256.0;
|
||||
(p2 - p1).cross(&(p3 - p2)).norm() < epsilon
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t_is_distance(ray: Ray<f64>, t: f64) -> bool {
|
||||
(ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_intersects_sphere() {
|
||||
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
|
||||
let s = Sphere::new(Vector3::new(1.5, 1.5, 15.0), 5.0);
|
||||
assert_matches!(s.intersect(&r), Some(_));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_does_not_intersect_sphere() {
|
||||
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
|
||||
let s = Sphere::new(Vector3::new(-5.0, 1.5, 15.0), 5.0);
|
||||
assert_matches!(s.intersect(&r), None);
|
||||
}
|
||||
}
|
||||
pub mod raycasting;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,124 @@
|
|||
use nalgebra::{RealField, Vector3};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Ray<T: RealField> {
|
||||
origin: Vector3<T>,
|
||||
direction: Vector3<T>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Ray<T> {
|
||||
pub fn new(origin: Vector3<T>, direction: Vector3<T>) -> Ray<T> {
|
||||
Ray {
|
||||
origin,
|
||||
direction: direction.normalize(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn point_at(&self, t: T) -> Vector3<T> {
|
||||
return self.origin + self.direction * t;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct IntersectionInfo<T: RealField> {
|
||||
pub distance: T,
|
||||
pub location: Vector3<T>,
|
||||
}
|
||||
|
||||
pub trait Intersect<T: RealField> {
|
||||
fn intersect(&self, ray: &Ray<T>) -> Option<IntersectionInfo<T>>;
|
||||
}
|
||||
|
||||
pub struct Sphere<T: RealField> {
|
||||
centre: Vector3<T>,
|
||||
radius: T,
|
||||
}
|
||||
|
||||
impl<T: RealField> Sphere<T> {
|
||||
pub fn new(centre: Vector3<T>, radius: T) -> Sphere<T> {
|
||||
Sphere { centre, radius }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField> Intersect<T> for Sphere<T> {
|
||||
fn intersect(&self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
|
||||
// t0/p0 is the point on the ray that's closest to the centre of the sphere
|
||||
let t0 = (self.centre - ray.origin).dot(&ray.direction);
|
||||
let p0 = ray.point_at(t0);
|
||||
if (self.centre - p0).norm() <= self.radius {
|
||||
Some(IntersectionInfo {
|
||||
distance: t0,
|
||||
location: p0,
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use quickcheck_macros::quickcheck;
|
||||
|
||||
macro_rules! assert_matches {
|
||||
($expression:expr, $($pattern:tt)+) => {
|
||||
match $expression {
|
||||
$($pattern)+ => (),
|
||||
ref e => panic!("assertion failed: `{:?}` does not match `{}`", e,
|
||||
stringify!($($pattern)+)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
use super::*;
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
|
||||
let origin = <Vector3<T> as Arbitrary>::arbitrary(g);
|
||||
let direction = <Vector3<T> as Arbitrary>::arbitrary(g);
|
||||
return Ray::new(origin, direction);
|
||||
}
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t0_is_origin(ray: Ray<f64>) -> bool {
|
||||
ray.point_at(0.0) == ray.origin
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t1_is_origin_plus_direction(ray: Ray<f64>) -> bool {
|
||||
ray.point_at(1.0) == ray.origin + ray.direction
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn points_are_colinear(ray: Ray<f64>, t1: f64, t2: f64, t3: f64) -> bool {
|
||||
let p1 = ray.point_at(t1);
|
||||
let p2 = ray.point_at(t2);
|
||||
let p3 = ray.point_at(t3);
|
||||
let epsilon = [t1, t2, t3, ray.origin[0], ray.origin[1], ray.origin[2]]
|
||||
.iter()
|
||||
.fold(0.0, |a, &b| a.max(b.abs()))
|
||||
* std::f64::EPSILON
|
||||
* 256.0;
|
||||
(p2 - p1).cross(&(p3 - p2)).norm() < epsilon
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn t_is_distance(ray: Ray<f64>, t: f64) -> bool {
|
||||
(ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_intersects_sphere() {
|
||||
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
|
||||
let s = Sphere::new(Vector3::new(1.5, 1.5, 15.0), 5.0);
|
||||
assert_matches!(s.intersect(&r), Some(_));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_does_not_intersect_sphere() {
|
||||
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(0.0, 0.0, 1.0));
|
||||
let s = Sphere::new(Vector3::new(-5.0, 1.5, 15.0), 5.0);
|
||||
assert_matches!(s.intersect(&r), None);
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue