Move Plane into it's own submodule
This commit is contained in:
parent
91579745cb
commit
c35735f117
|
|
@ -1,4 +1,4 @@
|
|||
use nalgebra::{convert, Point3, RealField, Vector3};
|
||||
use nalgebra::{Point3, RealField, Vector3};
|
||||
|
||||
use super::materials::Material;
|
||||
|
||||
|
|
@ -8,6 +8,9 @@ use std::sync::Arc;
|
|||
pub mod sphere;
|
||||
pub use sphere::Sphere;
|
||||
|
||||
pub mod plane;
|
||||
pub use plane::Plane;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Ray<T: RealField> {
|
||||
pub origin: Point3<T>,
|
||||
|
|
@ -47,81 +50,11 @@ pub trait Intersect<T: RealField>: Send + Sync {
|
|||
}
|
||||
|
||||
|
||||
|
||||
pub struct Plane<T: RealField> {
|
||||
normal: Vector3<T>,
|
||||
tangent: Vector3<T>,
|
||||
cotangent: Vector3<T>,
|
||||
distance_from_origin: T,
|
||||
material: Arc<dyn Material<T>>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Plane<T> {
|
||||
pub fn new(
|
||||
normal: Vector3<T>,
|
||||
distance_from_origin: T,
|
||||
material: Arc<dyn Material<T>>,
|
||||
) -> Plane<T> {
|
||||
normal.normalize();
|
||||
let mut axis_closest_to_tangent = Vector3::zeros();
|
||||
axis_closest_to_tangent[normal.iamin()] = T::one();
|
||||
let cotangent = normal.cross(&axis_closest_to_tangent).normalize();
|
||||
let tangent = normal.cross(&cotangent);
|
||||
Plane {
|
||||
normal,
|
||||
tangent,
|
||||
cotangent,
|
||||
distance_from_origin,
|
||||
material,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField> Intersect<T> for Plane<T> {
|
||||
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
|
||||
let ray_direction_dot_plane_normal = ray.direction.dot(&self.normal);
|
||||
let point_on_plane = self.normal * self.distance_from_origin;
|
||||
let point_on_plane_minus_ray_origin_dot_normal =
|
||||
(point_on_plane - ray.origin.coords).dot(&self.normal);
|
||||
if ray_direction_dot_plane_normal == convert(0.0) {
|
||||
//Ray is parallel to plane
|
||||
if point_on_plane_minus_ray_origin_dot_normal != convert(0.0) {
|
||||
//Ray is not in plane
|
||||
return None;
|
||||
}
|
||||
}
|
||||
let t = point_on_plane_minus_ray_origin_dot_normal / ray_direction_dot_plane_normal;
|
||||
if t < convert(0.0) {
|
||||
return None;
|
||||
}
|
||||
Some(IntersectionInfo {
|
||||
distance: t,
|
||||
location: ray.point_at(t),
|
||||
normal: self.normal,
|
||||
tangent: self.tangent,
|
||||
cotangent: self.cotangent,
|
||||
retro: -ray.direction,
|
||||
material: Arc::clone(&self.material),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use quickcheck_macros::quickcheck;
|
||||
|
||||
macro_rules! assert_matches {
|
||||
($expression:expr, $($pattern:tt)+) => {
|
||||
match $expression {
|
||||
$($pattern)+ => (),
|
||||
ref e => panic!("assertion failed: `{:?}` does not match `{}`", e,
|
||||
stringify!($($pattern)+)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
use super::*;
|
||||
use crate::materials::LambertianMaterial;
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
|
||||
|
|
@ -158,48 +91,4 @@ mod tests {
|
|||
fn t_is_distance(ray: Ray<f64>, t: f64) -> bool {
|
||||
(ray.point_at(t) - ray.origin).norm() - t.abs() < 0.0000000001
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_intersects_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
assert_matches!(p.intersect(&r), Some(_));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_does_not_intersect_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
assert_matches!(p.intersect(&r), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersection_point_is_on_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
match p.intersect(&r) {
|
||||
Some(IntersectionInfo {
|
||||
distance: _,
|
||||
location,
|
||||
normal: _,
|
||||
tangent: _,
|
||||
cotangent: _,
|
||||
retro: _,
|
||||
material: _,
|
||||
}) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001),
|
||||
None => panic!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,121 @@
|
|||
use nalgebra::{convert, RealField, Vector3};
|
||||
|
||||
use crate::materials::Material;
|
||||
|
||||
use super::{Intersect, IntersectionInfo, Ray};
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
pub struct Plane<T: RealField> {
|
||||
normal: Vector3<T>,
|
||||
tangent: Vector3<T>,
|
||||
cotangent: Vector3<T>,
|
||||
distance_from_origin: T,
|
||||
material: Arc<dyn Material<T>>,
|
||||
}
|
||||
|
||||
impl<T: RealField> Plane<T> {
|
||||
pub fn new(
|
||||
normal: Vector3<T>,
|
||||
distance_from_origin: T,
|
||||
material: Arc<dyn Material<T>>,
|
||||
) -> Plane<T> {
|
||||
normal.normalize();
|
||||
let mut axis_closest_to_tangent = Vector3::zeros();
|
||||
axis_closest_to_tangent[normal.iamin()] = T::one();
|
||||
let cotangent = normal.cross(&axis_closest_to_tangent).normalize();
|
||||
let tangent = normal.cross(&cotangent);
|
||||
Plane {
|
||||
normal,
|
||||
tangent,
|
||||
cotangent,
|
||||
distance_from_origin,
|
||||
material,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: RealField> Intersect<T> for Plane<T> {
|
||||
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
|
||||
let ray_direction_dot_plane_normal = ray.direction.dot(&self.normal);
|
||||
let point_on_plane = self.normal * self.distance_from_origin;
|
||||
let point_on_plane_minus_ray_origin_dot_normal =
|
||||
(point_on_plane - ray.origin.coords).dot(&self.normal);
|
||||
if ray_direction_dot_plane_normal == convert(0.0) {
|
||||
//Ray is parallel to plane
|
||||
if point_on_plane_minus_ray_origin_dot_normal != convert(0.0) {
|
||||
//Ray is not in plane
|
||||
return None;
|
||||
}
|
||||
}
|
||||
let t = point_on_plane_minus_ray_origin_dot_normal / ray_direction_dot_plane_normal;
|
||||
if t < convert(0.0) {
|
||||
return None;
|
||||
}
|
||||
Some(IntersectionInfo {
|
||||
distance: t,
|
||||
location: ray.point_at(t),
|
||||
normal: self.normal,
|
||||
tangent: self.tangent,
|
||||
cotangent: self.cotangent,
|
||||
retro: -ray.direction,
|
||||
material: Arc::clone(&self.material),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use nalgebra::Point3;
|
||||
|
||||
use super::*;
|
||||
use crate::materials::LambertianMaterial;
|
||||
|
||||
#[test]
|
||||
fn ray_intersects_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
if let None = p.intersect(&r) {
|
||||
panic!("Intersection failed.");
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ray_does_not_intersect_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
if let Some(_) = p.intersect(&r) {
|
||||
panic!("Intersection failed.");
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersection_point_is_on_plane() {
|
||||
let r = Ray::new(Point3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
|
||||
let p = Plane::new(
|
||||
Vector3::new(1.0, 0.0, 0.0),
|
||||
-5.0,
|
||||
Arc::new(LambertianMaterial::new_dummy()),
|
||||
);
|
||||
match p.intersect(&r) {
|
||||
Some(IntersectionInfo {
|
||||
distance: _,
|
||||
location,
|
||||
normal: _,
|
||||
tangent: _,
|
||||
cotangent: _,
|
||||
retro: _,
|
||||
material: _,
|
||||
}) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001),
|
||||
None => panic!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue