Rewrite BoundingVolumeHierarchy

New BVH has much cleaner design and is also using a much better
heuristic for dividing the scene.

Massive speedup (~28x!), presumable from having a heuristic that
actually works. This is still a simple heuristic (sort by
bounding box centres along largest dimension, and then divide into
equal halves) which can definitely be improved.
This commit is contained in:
Matthew Gordon 2020-08-11 23:59:03 -04:00
parent 3ca8bc14e4
commit 699c308782
5 changed files with 85 additions and 136 deletions

View File

@ -32,7 +32,8 @@ fn simple_scene(bencher: &mut Criterion) {
reflection_strength: 0.9,
}),
)
.unwrap(),
.unwrap()
.as_mut_slice(),
))],
};
b.iter(|| {

View File

@ -129,7 +129,7 @@ pub fn main() -> Result<(), Box<dyn std::error::Error>> {
let model_file_path =
Path::new(env!("CARGO_MANIFEST_DIR")).join("test_data/stanford_bunny.obj");
println!("Loading object...");
let model_object = load_obj(
let mut model_object = load_obj(
&model_file_path,
Arc::new(ReflectiveMaterial {
colour: ColourRgbF::from_named(NamedColour::Yellow),
@ -138,7 +138,8 @@ pub fn main() -> Result<(), Box<dyn std::error::Error>> {
}),
)?;
println!("Building BVH...");
let model_bvh: Box<dyn Aggregate<_>> = Box::new(BoundingVolumeHierarchy::build(model_object));
let model_bvh: Box<dyn Aggregate<_>> =
Box::new(BoundingVolumeHierarchy::build(model_object.as_mut_slice()));
println!("Constructing Scene...");
let scene = Scene {

View File

@ -68,7 +68,7 @@ mod wavefront_obj {
pub fn load_obj<T: Real>(
filename: &Path,
material: Arc<dyn Material<T>>,
) -> Result<Vec<Box<dyn Primitive<T>>>>
) -> Result<Vec<Arc<dyn Primitive<T>>>>
where
T: SupersetOf<f32>,
{
@ -80,7 +80,7 @@ mod wavefront_obj {
.flat_map(|object| object.groups.iter())
.flat_map(|group| group.polys.iter())
.flat_map(|poly| get_triangles(poly, &obj.position, &obj.normal, material.clone()))
.map(|triangle| Box::new(triangle) as Box<dyn Primitive<T>>)
.map(|triangle| Arc::new(triangle) as Arc<dyn Primitive<T>>)
.collect())
}
}

View File

@ -2,16 +2,12 @@ use super::{
Aggregate, BoundingBox, HasBoundingBox, Intersect, IntersectP, IntersectionInfo, Primitive, Ray,
};
use crate::util::binary_tree::BinaryTree;
use crate::util::morton::morton_order_value_3d;
use crate::util::normalizer::Point3Normalizer;
use crate::Real;
use nalgebra::{convert, Point3};
use std::mem::swap;
type Tree<T> = BinaryTree<BoundingBox<T>, Box<dyn Primitive<T>>>;
use std::cmp::Ordering;
use std::sync::Arc;
/// Stores a set of [Primitives](Primitive) and accelerates raycasting
///
@ -21,8 +17,16 @@ type Tree<T> = BinaryTree<BoundingBox<T>, Box<dyn Primitive<T>>>;
/// Each node knows the overall bounds of all it's children, which means that a ray that
/// doesn't intersect the [BoundingBox](BoundingBox) of the node doesn't intersect any of
/// the primitives stored in it's children.
pub struct BoundingVolumeHierarchy<T: Real> {
tree: Tree<T>,
pub enum BoundingVolumeHierarchy<T: Real> {
Node {
bounds: BoundingBox<T>,
left: Box<BoundingVolumeHierarchy<T>>,
right: Box<BoundingVolumeHierarchy<T>>,
},
Leaf {
bounds: BoundingBox<T>,
primitives: Vec<Arc<dyn Primitive<T>>>,
},
}
fn centre<T: Real>(bounds: &BoundingBox<T>) -> Point3<T> {
@ -34,66 +38,44 @@ fn centre<T: Real>(bounds: &BoundingBox<T>) -> Point3<T> {
)
}
struct PrimitiveInfo<T: Real>(BoundingBox<T>, Option<Box<dyn Primitive<T>>>);
fn heuristic_split<T: Real>(
primitives: &mut [Arc<dyn Primitive<T>>],
bounds: &BoundingBox<T>,
) -> usize {
let largest_dimension = bounds.largest_dimension();
primitives.sort_unstable_by(|a, b| {
centre(&a.bounding_box())[largest_dimension]
.partial_cmp(&centre(&b.bounding_box())[largest_dimension])
.unwrap_or(Ordering::Equal)
});
primitives.len() / 2
}
impl<T: Real> BoundingVolumeHierarchy<T> {
pub fn build<'a, I>(primitives: I) -> Self
where
I: IntoIterator<Item = Box<dyn Primitive<T>>>,
{
let tree = Self::from_node_vec(
primitives
.into_iter()
.map(|primitive| PrimitiveInfo(primitive.bounding_box(), Some(primitive)))
.collect(),
);
Self { tree }
pub fn build(primitives: &mut [Arc<dyn Primitive<T>>]) -> Self {
BoundingVolumeHierarchy::build_from_slice(primitives)
}
fn from_node_vec(nodes: Vec<PrimitiveInfo<T>>) -> Tree<T> {
let overall_bounds = nodes
pub fn build_from_slice(primitives: &mut [Arc<dyn Primitive<T>>]) -> Self {
let bounds = primitives
.iter()
.fold(BoundingBox::empty(), |a, PrimitiveInfo(b, _)| a.union(b));
let normalizer = Point3Normalizer::new(overall_bounds);
let mut nodes = nodes;
nodes.sort_by(|PrimitiveInfo(a, _), PrimitiveInfo(b, _)| {
morton_order_value_3d(normalizer.normalize(centre(a)))
.cmp(&morton_order_value_3d(normalizer.normalize(centre(b))))
});
Self::from_sorted_nodes(nodes.as_mut_slice())
}
fn from_sorted_nodes(nodes: &mut [PrimitiveInfo<T>]) -> Tree<T> {
if nodes.len() >= 2 {
let midpoint = nodes.len() / 2;
let left = Box::new(Self::from_sorted_nodes(&mut nodes[..midpoint]));
let right = Box::new(Self::from_sorted_nodes(&mut nodes[midpoint..]));
let bounds = Self::get_bounds(&left).union(&Self::get_bounds(&right));
Tree::Branch {
value: bounds,
.fold(BoundingBox::empty(), |acc, p| acc.union(&p.bounding_box()));
if primitives.len() <= 1 {
let primitives = primitives.iter().cloned().collect();
BoundingVolumeHierarchy::Leaf { bounds, primitives }
} else {
let pivot = heuristic_split(primitives, &bounds);
let left = Box::new(BoundingVolumeHierarchy::build_from_slice(
&mut primitives[0..pivot],
));
let right = Box::new(BoundingVolumeHierarchy::build_from_slice(
&mut primitives[pivot..],
));
BoundingVolumeHierarchy::Node {
bounds,
left,
right,
}
} else if nodes.len() == 1 {
let PrimitiveInfo(_, ref mut primitive_src) = nodes[0];
let mut primitive = None;
swap(primitive_src, &mut primitive);
let primitive = primitive.unwrap();
Tree::Leaf { value: primitive }
} else {
Tree::None
}
}
pub fn get_bounds(tree: &Tree<T>) -> BoundingBox<T> {
match tree {
Tree::Branch {
value,
left: _,
right: _,
} => *value,
Tree::Leaf { value } => value.bounding_box(),
Tree::None => BoundingBox::empty(),
}
}
}
@ -102,89 +84,54 @@ fn closest_intersection<T: Real>(
a: Option<IntersectionInfo<T>>,
b: Option<IntersectionInfo<T>>,
) -> Option<IntersectionInfo<T>> {
match (a, b) {
(Some(a), Some(b)) => {
if a.distance < b.distance {
Some(a)
match a {
None => b,
Some(a_info) => match b {
None => Some(a_info),
Some(b_info) => Some(if a_info.distance < b_info.distance {
a_info
} else {
Some(b)
}
}
(Some(a), None) => Some(a),
(None, Some(b)) => Some(b),
(None, None) => None,
}
}
impl<T: Real> Intersect<T> for Tree<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
match self {
Tree::Branch {
value: bounds,
left,
right,
} => {
if bounds.intersect(ray) {
closest_intersection(left.intersect(ray), right.intersect(ray))
} else {
None
}
}
Tree::Leaf { value: primitive } => primitive.intersect(ray),
Tree::None => None,
}
b_info
}),
},
}
}
impl<T: Real> Intersect<T> for BoundingVolumeHierarchy<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
self.tree.intersect(ray)
match self {
BoundingVolumeHierarchy::Node {
bounds,
left,
right,
} => {
if bounds.intersect(&ray) {
closest_intersection(left.intersect(&ray), right.intersect(&ray))
} else {
None
}
}
BoundingVolumeHierarchy::Leaf { bounds, primitives } => {
if bounds.intersect(&ray) {
primitives
.iter()
.map(|elem| elem.intersect(&ray))
.fold(None, |acc, elem| closest_intersection(acc, elem))
} else {
None
}
}
}
}
}
impl<T: Real> HasBoundingBox<T> for BoundingVolumeHierarchy<T> {
fn bounding_box(&self) -> BoundingBox<T> {
Self::get_bounds(&self.tree)
BoundingBox::empty()
}
}
impl<T: Real> Aggregate<T> for BoundingVolumeHierarchy<T> {}
#[cfg(test)]
mod test {
use quickcheck::{Arbitrary, Gen};
use quickcheck_macros::quickcheck;
use super::*;
use crate::materials::LambertianMaterial;
use crate::raycasting::Sphere;
use nalgebra::Point3;
use std::sync::Arc;
impl<T: Arbitrary + Real> Arbitrary for Sphere<T> {
fn arbitrary<G: Gen>(g: &mut G) -> Sphere<T> {
let centre = <Point3<T> as Arbitrary>::arbitrary(g);
let radius = <T as Arbitrary>::arbitrary(g);
Sphere::new(centre, radius, Arc::new(LambertianMaterial::new_dummy()))
}
}
fn sphere_vec_to_primitive_box_vec<T: Real>(
spheres: &Vec<Sphere<T>>,
) -> Vec<Box<dyn Primitive<T>>> {
let mut prims: Vec<Box<dyn Primitive<T>>> = Vec::with_capacity(spheres.len());
for sphere in spheres {
prims.push(Box::new(sphere.clone()));
}
prims
}
#[quickcheck]
fn contains_expected_number_of_primitives(spheres: Vec<Sphere<f32>>) -> bool {
let target = BoundingVolumeHierarchy::build(sphere_vec_to_primitive_box_vec(&spheres));
target.tree.count_leaves() == spheres.len()
}
}
mod test {}

View File

@ -1,11 +1,11 @@
use simba::scalar::{SubsetOf,SupersetOf};
use nalgebra::RealField;
use simba::scalar::{SubsetOf, SupersetOf};
pub trait NormalizedToU32 {
fn normalized_to_u32(self, num_bits: usize) -> u32;
}
pub trait Real: RealField + SupersetOf<f32> + SubsetOf<f32> + NormalizedToU32 {}
pub trait Real: RealField + SupersetOf<f32> + SubsetOf<f32> + NormalizedToU32 + PartialOrd {}
impl NormalizedToU32 for f32 {
fn normalized_to_u32(self, num_bits: usize) -> u32 {