Add (co)tangent to IntersectionInfo and redid sphere intersection

This commit is contained in:
Matthew Gordon 2019-11-27 17:02:23 -05:00
parent 015625ff20
commit 0a7963097c
2 changed files with 105 additions and 12 deletions

View File

@ -153,6 +153,8 @@ mod tests {
location,
distance: _,
normal: _,
tangent: _,
cotangent: _,
retro: _,
material: _,
}) => location,

View File

@ -32,6 +32,8 @@ pub struct IntersectionInfo<T: RealField> {
pub distance: T,
pub location: Vector3<T>,
pub normal: Vector3<T>,
pub tangent: Vector3<T>,
pub cotangent: Vector3<T>,
pub retro: Vector3<T>,
pub material: Rc<dyn Material<T>>,
}
@ -58,23 +60,30 @@ impl<T: RealField> Sphere<T> {
impl<T: RealField> Intersect<T> for Sphere<T> {
fn intersect<'a>(&'a self, ray: &Ray<T>) -> Option<IntersectionInfo<T>> {
let ray_origin_to_sphere_centre = self.centre - ray.origin;
/*let ray_origin_to_sphere_centre = self.centre - ray.origin;
let radius_squared = self.radius * self.radius;
let is_inside_sphere = ray_origin_to_sphere_centre.norm_squared() <= radius_squared;
// t0/p0 is the point on the ray that's closest to the centre of the sphere
// ray.direction is normalized, so it's not necessary to divide by its length.
let t0 = ray_origin_to_sphere_centre.dot(&ray.direction);
if !is_inside_sphere && t0 < T::zero() {
// Sphere is behind ray origin
return None;
}
// Squared distance between ray origin and sphere centre
let d0_squared = (ray.origin - self.centre).norm_squared();
// Squared distance petween p0 and sphere centre
let d0_squared = (ray_origin_to_sphere_centre).norm_squared();
// p0, ray.origin and sphere.centre form a right triangle, with p0 at the right corner,
// Squared distance petween p0 and sphere centre, using Pythagoras
let p0_dist_from_centre_squared = d0_squared - t0 * t0;
if p0_dist_from_centre_squared > radius_squared {
// Sphere is in front of ray but ray misses
return None;
}
let p0_dist_from_centre =p0_dist_from_centre_squared.sqrt();
// Two more right triangles are formed by p0, the sphere centre, and the two places
// where the ray intersects the sphere. (Or the ray may be a tangent to the sphere
// in which case these triangles are degenerate. Here we use Pythagoras again to find
.// find the distance between p0 and the two intersection points.
let delta = (radius_squared - p0_dist_from_centre_squared).sqrt();
let distance = if is_inside_sphere {
// radius origin is inside sphere
@ -84,19 +93,69 @@ impl<T: RealField> Intersect<T> for Sphere<T> {
};
let location = ray.point_at(distance);
let normal = (location - self.centre).normalize();
let retro = -ray.direction;
Some(IntersectionInfo {
distance,
location,
normal,
retro,
material: Rc::clone(&self.material),
})
let tangent = normal.cross(&Vector3::z_axis());
let cotangent = normal.cross(&tangent);
let retro = -ray.direction;*/
let two: T = convert(2.0);
let four: T = convert(4.0);
let a = ray
.direction
.component_mul(&ray.direction)
.iter()
.fold(T::zero(), |a, b| a + *b);
let b = ((ray.origin.component_mul(&ray.direction)
- self.centre.component_mul(&ray.direction))
* two)
.iter()
.fold(T::zero(), |a, b| a + *b);
let c = (ray.origin.component_mul(&ray.origin) + self.centre.component_mul(&self.centre)
- self.centre.component_mul(&ray.origin) * two)
.iter()
.fold(T::zero(), |a, b| a + *b)
- self.radius * self.radius;
let delta_squared: T = b * b - four * a * c;
if delta_squared < T::zero() {
None
} else {
let delta = delta_squared.sqrt();
let one_over_2_a = T::one() / (two * a);
let t1 = (-b - delta) * one_over_2_a;
let t2 = (-b + delta) * one_over_2_a;
let distance = if t1 < T::zero() {
t2
} else if t2 < T::zero() {
t1
} else if t1 < t2 {
t1
} else {
t2
};
if distance <= T::zero() {
None
} else {
let location = ray.point_at(distance);
let normal = (location - self.centre).normalize();
let tangent = normal.cross(&Vector3::z_axis());
let cotangent = normal.cross(&tangent);
let retro = -ray.direction;
Some(IntersectionInfo {
distance,
location,
normal,
tangent,
cotangent,
retro,
material: Rc::clone(&self.material),
})
}
}
}
}
pub struct Plane<T: RealField> {
normal: Vector3<T>,
tangent: Vector3<T>,
cotangent: Vector3<T>,
distance_from_origin: T,
material: Rc<dyn Material<T>>,
}
@ -108,8 +167,14 @@ impl<T: RealField> Plane<T> {
material: Rc<dyn Material<T>>,
) -> Plane<T> {
normal.normalize();
let mut axis_closest_to_tangent = Vector3::zeros();
axis_closest_to_tangent[normal.iamin()] = T::one();
let cotangent = normal.cross(&axis_closest_to_tangent);
let tangent = normal.cross(&cotangent);
Plane {
normal,
tangent,
cotangent,
distance_from_origin,
material,
}
@ -137,6 +202,8 @@ impl<T: RealField> Intersect<T> for Plane<T> {
distance: t,
location: ray.point_at(t),
normal: self.normal,
tangent: self.tangent,
cotangent: self.cotangent,
retro: -ray.direction,
material: Rc::clone(&self.material),
})
@ -159,7 +226,7 @@ mod tests {
use super::*;
use crate::materials::LambertianMaterial;
use quickcheck::{Arbitrary, Gen};
use quickcheck::{Arbitrary, Gen, TestResult};
impl<T: Arbitrary + RealField> Arbitrary for Ray<T> {
fn arbitrary<G: Gen>(g: &mut G) -> Ray<T> {
let origin = <Vector3<T> as Arbitrary>::arbitrary(g);
@ -240,6 +307,28 @@ mod tests {
assert_matches!(s.intersect(&r), Some(_));
}
#[quickcheck]
fn ray_intersects_sphere_centre_at_correct_distance(
ray_origin: Vector3<f64>,
sphere_centre: Vector3<f64>,
radius: f64,
) -> TestResult {
if radius <= 0.0 || radius + 0.000001 >= (ray_origin - sphere_centre).norm() {
return TestResult::discard();
};
let sphere = Sphere::new(
sphere_centre,
radius,
Rc::new(LambertianMaterial::new_dummy()),
);
let ray = Ray::new(ray_origin, sphere_centre - ray_origin);
let info = sphere.intersect(&ray).unwrap();
let distance_to_centre = (sphere_centre - ray.origin).norm();
TestResult::from_bool(
(distance_to_centre - (info.distance + sphere.radius)).abs() < 0.00001,
)
}
#[test]
fn ray_intersects_plane() {
let r = Ray::new(Vector3::new(1.0, 2.0, 3.0), Vector3::new(-1.0, 0.0, 1.0));
@ -275,6 +364,8 @@ mod tests {
distance: _,
location,
normal: _,
tangent: _,
cotangent: _,
retro: _,
material: _,
}) => assert!((location.x - (-5.0f64)).abs() < 0.0000000001),